If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3=-16t^2+166t+0
We move all terms to the left:
3-(-16t^2+166t+0)=0
We get rid of parentheses
16t^2-166t-0+3=0
We add all the numbers together, and all the variables
16t^2-166t+3=0
a = 16; b = -166; c = +3;
Δ = b2-4ac
Δ = -1662-4·16·3
Δ = 27364
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{27364}=\sqrt{4*6841}=\sqrt{4}*\sqrt{6841}=2\sqrt{6841}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-166)-2\sqrt{6841}}{2*16}=\frac{166-2\sqrt{6841}}{32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-166)+2\sqrt{6841}}{2*16}=\frac{166+2\sqrt{6841}}{32} $
| 7x+16=14+8-5x | | 3n–2=4 | | 2=0y | | 3^5x-2=4 | | 400-3a=160 | | 10x-19=3x+5 | | (3x+4)+(8x+4)=140 | | 59=7y+3 | | x^2-25-(x+5)=0 | | 6x+4=2(2x-) | | -45=10t-5t^2 | | 5x^2+30x+14=0 | | -96=-6(m+8) | | 0=7t-5t^2 | | -104=4(6b+4) | | 3a+a=4a | | X^2(x+1)=636 | | k-4=0 | | 18x-6=20x-1218x-6=20x-1218x-6=20x-1218x-6=20x-12 | | 18x-6=20x-1218x-6=20x-1218x-6=20x-12 | | -13=x/4-10 | | 18x-6=20x-1218x-6=20x-12 | | (2x+0,3)^2-5(2x+0,3)+4=0 | | -9m-10=53 | | 4x+6/2=x+6 | | 2x+2=30+3x-1=30 | | 5x+16/2=x+15 | | -2=r/9 | | 2x+2=30+3x-1 | | 56-5x=-8+3x | | -3=p-12 | | 3x-9=9/x+5 |